skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buxton, Cory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Language, Culture, and Knowledge-building through Science (LaCuKnoS) project tests and refines a model of science teaching and learning that brings together current research on the role of language in science communication, the role of cultural and community connections in science engagement, and the ways people apply science knowledge to their daily decision making. One key component of the model brings families together as co-learners and co-teachers through family learning experiences. We describe our work to promote more robust family conversations about science in our lives within an existing research practice partnership, using a two-tiered qualitative conversational analysis to compare the family conversations that result from three family engagement models: (a) family science festivals; (b) family science workshops; and (c) family science home learning. More specifically, this paper addresses the question: How do families describe and evaluate science in their lives and communities during family conversations that occur during each of these three engagement models? Discourse analysis using the appraisal dimension of systemic functional linguistics highlights the affective components of families evaluating science in their lives, as well as how each model provided unique affordances for different communicative goals. These findings are used to propose a set of design principles to guide the continued exploration of community-sustaining and family-centric models of family engagement as a key strategy for broadening science participation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. The vast and rapidly growing amount of science education research makes it challenging for researchers to navigate and synthesize developments across the field, particularly concerning broad concepts evolving along divergent paths. To address this issue, a novel review methodology employing bibliometrics and network analysis was tested to identify and characterize clusters of research focused on the relationship between school‐based science learning and contexts where that science is applied, experienced, observable, or otherwise relevant (e.g., socio‐scientific inquiry, place‐based learning, culturally‐responsive pedagogy). Using a sample of 935 academic papers, the bibliometric network analysis revealed the landscape of contextualized science learning research, identifying 13 distinct clusters of scholarship. Bibliometric and qualitative data were used to describe the research trends within clusters and confirm they were conceptually meaningful and distinct. This methodology facilitated greater understanding of how research can become clustered into “invisible colleges” over time, offering a synthesis approach to grasp interrelated lines of research within an evolving landscape. The methodology has potential to identify other schools of thought or overarching themes in science education, enhancing researchers’ ability to perceive the field as a coherent landscape of interconnected ideas or to identify specific research trajectories within a broad concept. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026
  4. na (Ed.)
    As part of Next Generation of Science Standards (NGSS), in-service and pre-service teachers must become familiar with and learn to plan and implement engineering activities using one of the available engineering design models. In addition, pre-service teachers must teach this content to a growing multilingual students in elementary grades in the US. In this presentation, we describe how pre-service teachers use a modified 7-step engineering model to teach about sound to a group of rising 4th grade emergent bilingual students in a summer program in English and Spanish. Using the process of territorialization from assemblage theory, we explore how three pre-service teachers implemented engineering activities using culturally and linguistically sustaining pedagogies. We conclude with a series of recommendations to facilitate the process of territorialization for pre-service teachers in science/engineering education. 
    more » « less